Закон гесса практическое значение

Термохимия.Тепловой эффект реакции. Закон Гесса.

Как известно, химические реакции можно разделить на экзотермические, т.е. протекающие с выделением теплоты, и эндотермические, т.е. протекающие с поглощением теплоты. Уравнение первого закона термодинамики для процесса, сопровождающегося химическими превращениями, имеет следующий вид:

dQ = dU + pdV + dL * ,

где pdV– дифференциал работы расширения; dL * — дифференциал других возможных видов работы, совершающейся в процессе химической реакции. Выбор знаков для теплоты и работы является условным. И хотя в термохимии часто полагают Q положительным при выделении теплоты системой в ходе реакции, будем считать положительными теплоту, сообщаемую системе, и работу, произведенную системой.

Под тепловым эффектом реакции понимается количество теплоты, выделяющейся или поглощающейся при неизменных V и T или при неизменных p и T и при условии, что системой может производиться работа расширения , а dL * = 0.

Для изохорно-изотермического процесса pdV = 0, поэтому уравнение первого закона принимает вид dQ v = dU. Для изобарно-изотермической реакции dQ p = dH. Поэтому Qv и Qp однозначно определяются начальными и конечными состояниями системы.

Изложенное составляет основу закона, открытого в 1840 г. русским химиком Г. И. Гессом.

Закон Гесса может быть сформулирован так: тепловой эффект реакции, состоящей из нескольких промежуточных стадий,не зависит от этих промежуточных стадий или их последовательности, а полностью определяется начальным и конечным состояниями системы.

Закон Гесса может быть выражен также следующим образом: если си с тема посредством ряда химических превращений совершает круговой процесс при неизменных температуре и объёме или неизменных температуре и давлении, то алгебраическая сумма тепловых эффектов реакций должна быть равна нулю. В результате кругового процесса значения функций состояния остаются неизменными, а значит алгебраическая сумма тепловых эффектов должна быть равна нулю.

Из закона Гесса вытекают очевидные следствия, имеющие практическое значение:

  1. Тепловой эффект образования соединения из исходных веществ не зависит от способа, которым это соединение получено.
  2. Тепловой эффект разложения какого-либо химического соединения до определённых продуктов равен и противоположен по знаку тепловому эффекту образования этого соединения из тех же продуктов.
  3. Разность между тепловыми эффектами превращения двух различных систем в одинаковые продукты реакции равна тепловому эффекту перехода одной системы в другую. Или наоборот: разность тепловых эффектов превращения двух одинаковых химических систем в различные продукты реакции равна тепловому эффекту перехода одних продуктов реакции в другие.

Так как в термохимических таблицах часто приводятся значения тепловых эффектов образования веществ из элементов в изобарно-изотермическом процессе при стандартных условиях (р=760 мм рт. ст.=101.325 кПа и t=25С ), то это же следствие из закона Гесса можно сформулировать следующим образом: тепловой эффект реакции равен алгебраической сумме теплот образования продуктов реакции за вычетом суммы теплот образования исходных веществ, т.е.

Иногда в таблицах приводятся значения тепловых эффектов сгорания (теплот сгорания) веществ, обычно также в изобарно-изотермическом процессе и стандартных условиях. При этом имеется в виду, что осуществляется полное сгорание. Для этого случая третье следствие закона Гесса можно сформулировать так: тепловой эффект реакции равен алгебраической сумме теплот сгорания исходных веществ за вычетом суммы теплот сгорания продуктов реакции, т.е.

СО + 1/2 О2 ––> СО2 ΔН3

3. Для двух реакций, имеющих одинаковые конечные, но разные исходные состояния, разность тепловых эффектов представляет собой тепловой эффект перехода из одного исходного состояния в другое.

С(алмаз) + О2 ––> СО2 ΔН1

С(графит) + О2 ––> СО2 ΔН2

С(алмаз) ––> С(графит) ΔН3

4. Тепловой эффект химической реакции равен разности сумм теплот образования продуктов реакции и исходных веществ, умноженных на стехиометрические коэффициенты.

5. Тепловой эффект химической реакции равен разности сумм теплот сгорания исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты.

(I.21) При условии протекания в системе химических или фазовых превращений энтальпию также следует рассматривать как функцию . Тогда:

(I,58)

Принимая во внимание определение энтальпии (I, 51) и (I, 31), после дифференцирования можем записать:

(I, 58а)

(I, 58б)

Если Р = const и  = const, то . Итак, окончательно получим:

(I,59)

где = — это тепловой эффект химической реакции, протекающей до конца (), прии. Он равен изменению энтальпии системы.Принимая во внимание определение энтальпии (I, 51), также можно записать:

Первые два слагаемых в правой части уравнения по первому закону термодинамики (смотри (I, 7а)) равны , тогда :(I, 59а)

Следовательно, и с учётом (I,59) для элементарной теплоты получаем:

Тепловой эффект химической реакции – это количество теплоты, выделившейся или поглощённой при протекании реакции до конца () и постоянных значениях параметров системы.

Это понятие следует отличать от понятия теплоты реакции, которое не имеет такого строгого термодинамического смысла как тепловой эффект. Теплота реакции – опытная величина, она может быть определена во всех случаях, когда реакция протекает не до конца или, например, температура исходных веществ и продуктов реакции отличаются и т.д. По этой причине теплота реакции не несёт какой-либо существенной информации об особенностях протекающих в системе химических превращений и имеет ограниченное применение.

Тепловой эффект химической реакции. Стандартные теплоты образования и сгорания. Закон Гесса, следствия из закона Гесса.

Тепловой эффект — количество теплоты, выделившееся или поглощенное химической системой при протекании в ней химической реакции.

Тепловой эффект обозначается символом Q. Его величина соответствует разности между энергиями исходного и конечного состояний реакции.

Термохимия, закон Гесса и его сущность;

Лекция 2. Термохимия, закон Гесса

Вопросы для самопроверки

1. Дайте определение понятия „термодинамическая система”. Назовите типы термодинамических систем.

2. Назовите основные виды термодинамических процессов.

3. Дайте определение функции состояния. Являются ли внутренняя энергия, теплота и работа функциями состояния?

4. Какие формулировки первого закона термодинамики вам известны?

5. Напишите уравнение первого закона термодинамики и укажите, какие вели­чины, входящие в это уравнение, зависят от пути проведения процесса.

6. Будет ли изменяться внутренняя энергия идеального газа при T = const, если этот газ подвергнуть изотермическому сжатию или расширению?

7. В изолированной термодинамической системе протекает реакция сгорания водорода с образованием жидкой воды. Изменяется ли внутренняя энер­гия и энтальпия данной системы?

8. Объясните, почему внутренняя энергия изолированной термодинамиче­ской системы величина постоянная?

9. Что такое тепловые эффекты Qv и QP?

10. Какова взаимосвязь между Qv и QP для химических реакций, протекающих в газовой фазе?

11. Какое практическое значение имеет первый закон термодинамики в физической химии?

2.1 Термохимия, закон Гесса и его сущность

2.2 Стандартное состояние вещества и стандартные тепловые эффекты

2.3 Следствия из закона Гесса, их роль в термохимических расчетах

2.4 Зависимость тепловых эффектов реакций от температуры. Уравнение Кирхгофа.

При химических превращениях происходит изменение внутренней энергии U системы, так как U продуктов реакции отличается от внутренней энергии прореагировавших веществ. Изучение этих изменений имеет большое значение для термодинамических расчетов, и является одним из путей определения отдельных химических связей в молекуле и количественной оценки прочности связей.

Изменение внутренней энергии U происходит в химических реакциях путем поглощения или выделения теплоты и совершения работы. Работа А обычно мала, ею можно пренебречь или вычислить. Теплота химической реакции имеет значительную величину, она может быть измерена или вычислена.

Изучением теплот химических реакций занимается термохимия – один из важнейших разделов химической термодинамики.

Тепловым эффектом химической реакции называется теплота, выделяемая (поглощаемая) в результате реакции при соблюдении определенных условий:

1. Давление или объем постоянны (р = const или V = const)

2. Не совершается никакой работы, кроме работы расширения (А’ = 0)

3. Температуры исходных веществ и продуктов реакции одинаковы (Т1 = Т2)

В основе термохимии лежит закон Гесса (закон постоянства сумм теплот реакций), открытый русским ученым, академиком Гессом, на основе анализа экспериментальных данных, в 1836-1840 гг. Закон Гесса гласит:

тепловой эффект химической реакции не зависит от пути и числа промежуточных стадий, а определяется лишь природой и состоянием исходных веществ и конечных продуктов.

Закон Гесса является следствием первого закона термодинамики в применении к химическим процессам при соблюдении первых двух вышеуказанных условий. Третье условие введено для удобства сопоставления тепловых эффектов.

Закон Гесса удобно иллюстрировать термохимическими схемами с использованием замкнутых циклов.

Процесс получения СО2 (из С и О2) можно изобразить схемой

Рис. 2.1 Схема возможных путей образования СО2

С1О2 СО2

С1О2 СО1½О2 CO2

= −94,05 ккал/моль = +

= −67,64 ккал/моль = = −94,05−67,64=−26,41 ккал/моль

Закон гесса практическое значение

4.4. Закон Гесса

Пользуясь табличными значениями и , можно рассчитать энтальпии различных химических процессов и фазовых превращений. Основанием для таких расчетов является закон Гесса , сформулированный петербургским профессором Г. И. Гессом (1841 г.): «Тепловой эффект (энтальпия) процесса зависит только от начального и конечного состояния и не зависит от пути перехода его из одного состояния в другое» .

Анализ закона Гесса позволяет сформулировать следующие следствия:

Энтальпия реакции равна разности сумм энтальпий образования конечных и начальных участников реакций с учетом их стехиометрических коэффициентов.

Энтальпия реакции равна разности сумм энтальпий сгорания начальных и конечных реагентов с учетом их стехиометрических коэффициентов.

Энтальпия реакции равна разности сумм энергий связей E св исходных и конечных реагентов с учетом их стехиометрических коэффициентов.

В ходе химической реакции энергия затрачивается на разрушение связей в исходных веществах ( Σ E исх ) и выделяется при образованиии продуктов реакции ( –Σ E прод ). Отсюда

Следовательно, экзотермический эффект реакции свидетельствует о том, что образуются соединения с более прочными связями, чем исходные. В случае эндотермической реакции, наоборот, прочнее исходные вещества.

При определении энтальпии реакции по энергиям связей уравнение реакции пишут с помощью структурных формул для удобства определения числа и характера связей.

Энтальпия реакции образования вещества равна энтальпии реакции разложения его до исходных веществ с обратным знаком.

Энтальпия гидратации равна разности энтальпий растворения безводной соли и кристаллогидрата

Из вышесказанного видно, что закон Гесса позволяет обращаться с термохимическими уравнениями как с алгебраическими, т. е. складывать и вычитать их, если термодинамические функции относятся к одинаковым условиям.

Например, диоксид углерода можно получить прямым синтезом из простых веществ (I) или в две стадии через промежуточный продукт (II):

Эти термохимические реакции можно представить в виде энтальпийных диаграмм. Естественно, за начало следует принять стандартные состояния простых веществ, энтальпии которых равны нулю. Образование сложных веществ (CO и CO2) сопровождается понижением энтальпии системы.

Термохимия. Закон Гесса. Теплоты образования химических соединений. Следствие из закона Гесса

Физхимия на завтра

Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

Закон Гесса — основной закон термохимии, который формулируется следующим образом:

  • Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
  • Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данноехимическое превращение в одну или в несколько стадий (при условии, что температура, давление и агрегатные состояния веществ одинаковы). Например, окислениеглюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы.

    На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением:

    Закон открыт русским химиком Г. И. Гессом в 1840 г.; он является частным случаем первого начала термодинамикиприменительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.

  • Тепловой эффект прямой реакции равен по величине и противоположен по знаку тепловому эффекту обратной реакции (закон Лавуазье-Лапласа).
  • Тепловой эффект химической реакции равен разности сумм теплот образования (ΔHf) продуктов реакции и исходных веществ, умноженных на стехиометрическиекоэффициенты (ν):
  • Тепловой эффект химической реакции равен разности сумм теплот сгорания (ΔHc) исходных веществ и продуктов реакции, умноженных на стехиометрические коэффициенты (ν):
  • Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры.

  • Если начальное и конечное состояния химической реакции (реакций) совпадают, то её (их) тепловой эффект равен нулю.
  • Термохи́мия — раздел химической термодинамики, в задачу которой входит определение и изучение тепловых эффектов реакций, а также установление их взаимосвязей с различными физико-химическими параметрами. Ещё одной из задач термохимии является измерение теплоёмкостей веществ и установление их теплот фазовых переходов.

    Основные понятия и законы термохимии[править | править исходный текст]

    Термохимические уравнения реакций — это уравнения, в которых около символов химических соединений указываются агрегатные состояния этих соединений или кристаллографическая модификация и в правой части уравнения указываются численные значения тепловых эффектов

    Этот раздел не завершён.

    Вы поможете проекту, исправив и дополнив его.

    Важнейшей величиной в термохимии является стандартная теплота образования (стандартная энтальпия образования). Стандартной теплотой (энтальпией) образования сложного вещества называется тепловой эффект (изменение стандартной энтальпии) реакции образования одного моля этого вещества из простых веществ в стандартном состоянии. Стандартная энтальпия образования простых веществ в этом случае принята равной нулю.

    В термохимических уравнениях необходимо указывать агрегатные состояния веществ с помощью буквенных индексов, а тепловой эффект реакции (ΔН) записывать отдельно, через запятую. Например, термохимическое уравнение

    4NH3(г) + 3O2(г) → 2N2(г) + 6H2O(ж), ΔН=-1531 кДж

    показывает, что данная химическая реакция сопровождается выделением 1531 кДж теплоты, при давлении 101 кПа, и относится к тому числу молей каждого из веществ, которое соответствует стехиометрическому коэффициенту в уравнении реакции.

    В термохимии также используют уравнения, в которых тепловой эффект относят к одному молю образовавшегося вещества, применяя в случае необходимости дробные коэффициенты.

    Тепловой эффект реакции образования вещества из каких-либо исходных веществ. Различают: Т. о. из свободных атомов; Т. о. из простых веществ, отвечающих наиболее устойчивому состоянию элементов при данных давлении и температуре; теплоту сольватации (См. Сольватация), то есть Т. о. сольватных оболочек вокруг ионов при взаимодействии веществ с растворителем; теплоту кристаллизации (См. Кристаллизация), то есть Т. о. кристаллов из частиц (атомов, молекул, ионов), образующих решётку кристаллов, и т. д. Наиболее широко используют Т. о. из простых веществ и Т. о. из свободных атомов (или противоположную ей по знаку теплоту атомизации, то есть распада молекулы вещества на составляющие её атомы). Эти величины, как правило, приводятся для веществ в стандартных состояниях (См. Стандартные состояния).

    Определение Т. о. может быть выполнено различными способами: прямыми (калориметрическими) измерениями; по температурной зависимости константы равновесия реакции образования с помощью изобары (См. Изобара) или изохоры (См.Изохора) уравнения; вычислением из теплового эффекта реакции, в которой участвует данное вещество, при условии, что известны Т. о. остальных реагентов и продуктов реакции (с помощью Гесса закона); по гиббсовой энергии (См. Гиббсова энергия) и энтропии (См. Энтропия) всех реагентов; из изменения ЭДС гальванического элемента (См. Гальванические элементы) при различных температурах с помощью уравнения Гиббса — Гельмгольца; расчётом на основе многочисленных закономерностей для Т. о. различных веществ. Надёжные экспериментальные данные по Т. о. известны приблизительно для 5000 соединений. Имеющиеся величины Т. о. позволяют определять тепловые эффекты многих десятков тысяч реакций без проведения опытов. Совместно с др. данными термодинамики химической (См. Термодинамика химическая) они служат основой для расчёта изменений гиббсовой энергии, позволяющих судить о стабильности и сравнительной устойчивости различных химических соединений.

    Для большого числа веществ Т. о. могут быть с хорошей степенью точности оценены с помощью закономерностей, связывающих Т. о. со строением веществ и установленных при анализе обширного экспериментального материала на основе классической теории строения химических соединений и квантовой механики молекул (см. Квантовая химия). Эти закономерности используют периодичность свойств однотипных соединений групп и периодов периодической системы элементов (См.Периодическая система элементов) Д. И. Менделеева и приближённое постоянство строения и свойств отдельных структурных фрагментов молекул в гомологических рядах (См. Гомологические ряды).

    Тепловой эффект реакции образования вещества из каких-либо исходных веществ. Различают: Т. о. из свободных атомов; Т. о. из простых веществ, отвечающих наиболее устойчивому состоянию элементов при данных давлении и температуре; теплоту сольватации , то есть Т. о. сольватных оболочек вокруг ионов при взаимодействии веществ с растворителем; теплоту кристаллизации , то есть Т. о. кристаллов из частиц (атомов, молекул, ионов), образующих решётку кристаллов, и т. д. Наиболее широко используют Т. о. из простых веществ и Т. о. из свободных атомов (или противоположную ей по знаку теплоту атомизации, то есть распада молекулы вещества на составляющие её атомы). Эти величины, как правило, приводятся для веществ в стандартных состояниях .

    Определение Т. о. может быть выполнено различными способами: прямыми (калориметрическими) измерениями; по температурной зависимости константы равновесия реакции образования с помощью изобары или изохоры уравнения; вычислением из теплового эффекта реакции, в которой участвует данное вещество, при условии, что известны Т. о. остальных реагентов и продуктов реакции (с помощью Гесса закона); по гиббсовой энергии и энтропии всех реагентов; из изменения ЭДС гальванического элемента при различных температурах с помощью уравнения Гиббса — Гельмгольца; расчётом на основе многочисленных закономерностей для Т. о. различных веществ. Надёжные экспериментальные данные по Т. о. известны приблизительно для 5000 соединений. Имеющиеся величины Т. о. позволяют определять тепловые эффекты многих десятков тысяч реакций без проведения опытов. Совместно с др. данными термодинамики химической они служат основой для расчёта изменений гиббсовой энергии, позволяющих судить о стабильности и сравнительной устойчивости различных химических соединений.

    Для большого числа веществ Т. о. могут быть с хорошей степенью точности оценены с помощью закономерностей, связывающих Т. о. со строением веществ и установленных при анализе обширного экспериментального материала на основе классической теории строения химических соединений и квантовой механики молекул . Эти закономерности используют периодичность свойств однотипных соединений групп и периодов периодической системы элементов Д. И. Менделеева и приближённое постоянство строения и свойств отдельных структурных фрагментов молекул в гомологических рядах.

    Смотрите так же:

    • Статистика преступлений 2009 Анализ статистических данных МВД Российской Федерации свидетельствует о том, что за 2009 год органами внутренних дел России рассмотрено 22,8 млн. заявлений, сообщений и другой информации о происшествиях, что на 6,0% больше, по сравнению с предыдущим годом. По каждому девятому сообщению […]
    • Обжалование постановление областного суда Об этой странице Источником запросов может служить вредоносное ПО, подключаемые модули браузера или скрипт, настроенный на автоматических рассылку запросов. Если вы используете общий доступ в Интернет, проблема может быть с компьютером с таким же IP-адресом, как у вас. Обратитесь к […]
    • Реестр мас 1. Нужно зайти в реестр по адресу HKEY_LOCAL_MACHINE -> SYSTEM -> CurrentControlSett -> Control -> Class; 2. Нужно найти значение 4D36E972-E325-11CEBFC1-08002BE10318; 3. Перебираем папки с номерами 0000,0001,0002,0003 и т.д., пока в правом окошке не найдем свою сетевуху; 4. Создаем там […]
    • Что является клеветой Клевета (ст. 129 УК). Согласно закону клевета — это распространение заведомо ложных сведений, порочащих честь и достоинство другого лица или подрывающих его репутацию. С объективной стороны клевета выражается в активном действии, связанном с распространением порочащих другое лицо […]
    • Учебные материалы учебник учебное пособие Библиографическая ссылка на статью: Овчинникова Е.Н. К определению терминов "учебник" и "учебное пособие" // Гуманитарные научные исследования. 2012. № 5 [Электронный ресурс]. URL: http://human.snauka.ru/2012/05/1189 (дата обращения: 07.06.2018). Новый этап развития образования в России, […]
    • Подоходной налог в польше Об этой странице Опыт многих наших соотечественников показал, что заработок в Европе – это возможность решить многие финансовые проблемы. Один из важнейших вопросов, требующих досконального изучения – налоги. В Польше, Швеции, Германии, Турции, Греции и других странах они заметно […]